Publications
Journal Articles
- M. Yu, K. N. Ramamurthy, A. Thompson, and A. C. Lozano, “Simultaneous Parameter Learning and Bi-Clustering for Multi-Response Models,” Frontiers in Big Data, vol. 2, 2019.
- M. Arnold et al., “FactSheets: Increasing trust in AI services through supplier’s declarations of conformity,” IBM Journal of Research and Development, vol. 63, no. 4/5, pp. 6:1-6:13, 1 July-Sept. 2019.
- R. K. E. Bellamy et al., “AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias,” IBM Journal of Research and Development, vol. 63, no. 4/5, pp. 4:1-4:15, 1 July-Sept. 2019.
- R. K. E. Bellamy et al., “Think Your Artificial Intelligence Software Is Fair? Think Again,” in IEEE Software, vol. 36, no. 4, pp. 76-80, July-Aug. 2019. doi: 10.1109/MS.2019.2908514
- D. Wei, K. N. Ramamurthy, and K. R. Varshney, “Distribution preserving k-anonymity,” Statistical Analysis and Data Mining: The ASA Data Science Journal, 2018.
- F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, K. R. Varshney, “Data Pre-Processing for Discrimination Prevention: Information-Theoretic Optimization and Analysis,” IEEE Journal of Selected Topics in Signal Processing, 12(5), 1106-1119, 2018.
- C. Kuhlman, K. N. Ramamurthy, P. Sattigeri, A. C. Lozano, L. Cao, C. Reddy, A. Mojsilovic, and K. R. Varshney , “How to Foster Innovation: A Data-Driven Approach to Measuring Economic Competitiveness,” IBM Journal of Research and Development, 2017.
- K. R. Varshney, D. Wei, K. N. Ramamurthy, and A. Mojsilovi'{c}, “Data Challenges in Disease Response: The 2014 Ebola Outbreak and Beyond”, ACM Journal of Data and Information Quality, 2015.
- K. N. Ramamurthy, L. A. Hinnov, and A. Spanias, “Teaching Earth Signals Analysis using the Java-DSP Earth Systems Edition: Modern and Past Climate Change,” Journal of Geoscience Education, 2014.
- J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Learning Stable Multilevel Dictionaries for Sparse Representations,” IEEE Transactions on Neural Networks and Learning Systems, 2014.
- J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Multiple Kernel Sparse Representations for Supervised and Unsupervised Learning,” IEEE Transactions on Image Processing, 2014.
- J. J. Thiagarajan, K. N. Ramamurthy, D. Rajan, A. Puri, D. Frakes, and A. Spanias, “Kernel sparse models for automated tumor segmentation,” International Journal on Artificial Intelligence Tools, 2014 (invited paper).
- K. N. Ramamurthy, J. J. Thiagarajan, and A. Spanias, “Recovering Non-negative and Combined Sparse Representations,” Digital Signal Processing, 2013.
- J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Mixing matrix estimation using discriminative clustering for blind source separation,” Digital Signal Processing, 2012.
- J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Optimality and Stability of the K-hyperline Clustering Algorithm,” Pattern Recognition Letters, 2011.
- K. N. Ramamurthy, J. J. Thiagarajan, P. Sattigeri, and A. Spanias, “Transform Domain Features for Ion-channel Signal Classification”, Biomedical Signal Processing and Control, 2010.
Conference Proceedings (from 2018 - see CV for the full list)
- D. Wei, K. N. Ramamurthy, and F. Calmon “Optimized Score Transformation for Fair Classification,” AISTATS, 2020 (to appear). paper code
- P. Zhao, P.-Y. Chen, Payel Das, K. N. Ramamurthy, and X. Lin, “Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness,” ICLR, 2020.
- M. Oh, P. Olsen, and K. N. Ramamurthy, “Crowd Counting with Decomposed Uncertainty,” AAAI, 2020.
- S. Subramanian, I. Baldini, S. Ravichandran, D. A. Katz-Rogozhnikov, K. N. Ramamurthy, P. Sattigeri, K. R. Varshney, A. Wang, P. Mangalath, and L. B. Kleiman, “A Natural Language Processing System for Extracting Evidence of Drug Repurposing from Scientific Publications,” IAAI, 2020.
- M. Singh, and K. N. Ramamurthy, “Understanding racial bias in health using the Medical Expenditure Panel Survey data,” NeurIPS Workshop on Fair ML for Health, 2019 (Spotlight presentation).
- S. Subramanian et al., “Drug Repurposing for Cancer: An NLP Approach to Identify Low-Cost Therapies,” NeurIPS 2019 Workshop on Machine Learning for Health, 2019.
- N. Codella, M. Hind, K. N. Ramamurthy, M. Campbell, A. Dhurandhar, K. Varshney, D. Wei, and A. Mojsilovic, “Teaching AI to Explain its Decisions Using Embeddings and Multi-Task Learning”, ICML Workshop on Human In the Loop Learning, 2019.
- K. N. Ramamurthy, K. R. Varshney, and K. Mody, “Topological Data Analysis of Decision Boundaries with Application to Model Selection,” ICML, 2019.
- P. K. Lohia, K. N. Ramamurthy, M. Bhide, D. Saha, K. R. Varshney, and R. Puri, “Bias Mitigation Post-processing for Individual and Group Fairness,” IEEE ICASSP, 2019.
- A. Coston, K. N. Ramamurthy, D. Wei, K. Varshney, S. Speakman, Z. Mustahsan, and S. Chakraborty, “Fair Transfer Learning with Missing Protected Attributes,” AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, Jan. 2019.
- N. Codella, M. Hind, K. N. Ramamurthy, M. Campbell, A. Dhurandhar, K. Varshney, D. Wei, and A. Mojsilovic, “TED: Teaching AI to Explain its Decisions,” AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, Jan. 2019.
- P. Sattigeri, S. Ghosh, A. Kumar, K. N. Ramamurthy, S. Hoffman, Y. Drissi, and I. Padhi, “Probabilistic Mixture of Model-Agnostic Meta-Learners,” Proc. NeurIPS Workshop on Bayesian Deep Learning, Dec. 2018.
- P. Olsen, K. N. Ramamurthy, J. Ribera, Y. Chen, A. Thompson, R. Luss, M. Tuinstra, and N. Abe, “Detecting and Counting Panicles in Sorghum Images,” Proc. IEEE DSAA, Oct. 2018.
- P. Olsen, K. N. Ramamurthy, J. Ribera, Y. Chen, A. Thompson, R. Luss, M. Tuinstra, and N. Abe, “Learning to Detect and Count Panicles in Sorghum Images,” Proc. KDD FEED Workshop, Aug. 2018.
- A. Som, K. Thopalli, K. N. Ramamurthy, V. Venkataraman, A. Shukla, and P. Turaga, “Perturbation Robust Representations of Topological Persistence Diagrams,” Proc. of European Conference on Computer Vision, Sep. 2018.
- W. Zhang, R. Horesh, K. N. Ramamurthy, L. Wu, J. Yi, K. Anderson, and K. R. Varshney, “Financial Forecasting and Analysis for Low-Wage Workers,” Bloomberg Data for Good Exchange, Sep. 2018.
- J. J. Thiagarajan, S. Liu, K. N. Ramamurthy, and P-T. Bremer. “Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections,” In Computer Graphics Forum, 37(3), pp. 241-251, Jul. 2018.
Book Chapters
- A. Som, K. N. Ramamurthy, and P. Turaga, “Geometric Metrics for Topological Representations.” In Handbook of Variational Methods for Nonlinear Geometric Data, Springer, 2020.
- C.-C. Lin, K. N. Ramamurthy, and S. U. Pankanti, “Moving Camera Analytics: Computer Vision Applications.” In Embedded, Cyber-Physical, and IoT Systems, pp. 89-113. Springer, Cham, 2020.
Books
- J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Sparse Representations for Image Understanding,” Synthesis Lectures on Image, Video and Multimedia, Morgan and Claypool Publishers, 2014.
- K. N. Ramamurthy and A. Spanias, “MATLAB Software for the Code Excited Linear Prediction Algorithm,” Synthesis Lectures on Algorithms and Software in Engineering, Morgan and Claypool Publishers, 2010.